Nanoscale memristive radiofrequency switches
نویسندگان
چکیده
منابع مشابه
Nanoscale memristive radiofrequency switches.
Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on ...
متن کاملNanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches.
Resistive switching memories are nonvolatile memory cells based on nano-ionic redox processes and offer prospects for high scalability, ultrafast write and read access, and low power consumption. In two-terminal cation based devices a nanoscale filament is formed in a switching material by metal ion migration from the anode to the cathode. However, the filament growth and dissolution mechanisms...
متن کاملThe mechanism of electroforming of metal oxide memristive switches.
Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields--through 'electroforming' or 'breakdown'--critically affecting CMOS (complementary metal-oxide-semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been ...
متن کاملProbing nanoscale oxygen ion motion in memristive systems
Ion transport is an essential process for various applications including energy storage, sensing, display, memory and so on, however direct visualization of oxygen ion motion has been a challenging task, which lies in the fact that the normally used electron microscopy imaging mainly focuses on the mass attribute of ions. The lack of appropriate understandings and analytic approaches on oxygen ...
متن کاملNano crossbar array of Complementary Resistive Switches with nonlinear memristive characteristics
Emerging solid state memory devices based on different materials and volatility has been widely acknowledged like NVRAMs (or Memristor).Evolution of new solid state ionic conductors and in particular (Memristor) brought impetus to the creation of new domain of larger storage capabilities for the future electronic systems. The achievements of these emerging technologies are kind of encouraging w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2015
ISSN: 2041-1723
DOI: 10.1038/ncomms8519